organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Acetyl-2,6-bis(4-methoxyphenyl)-3-methyl-4-piperidone

T. Kavitha,^a S. Ponnuswamy,^b K. Kaileshwaran^b and M. N. Ponnuswamy^a*

^aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ^bDepartment of Chemistry. Government Arts College (Autonomous), Coimbatore 641 018, India Correspondence e-mail: mnpsy2004@yahoo.com

Received 16 July 2007; accepted 19 July 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.058; wR factor = 0.202; data-to-parameter ratio = 26.0.

The piperidine ring in the title molecule, $C_{22}H_{25}NO_4$, adopts a boat conformation. The bond lengths and angles in the vicinity of the N atom reflect the expected delocalization of electrons in this part of the molecule. The crystal structure is stabilized by weak intermolecular C-H···O and C-H··· π interactions.

Related literature

For related literature, see: Comins et al. (2001); Nardelli (1995); Roques et al. (1981); Wang & Wuorola (1992).

Experimental

Crystal data

C22H25NO4 $M_r = 367.43$ Monoclinic, $P2_1/c$ a = 17.2799 (5) Å b = 10.6783 (3) Å c = 10.5702 (3) Å $\beta = 90.951 \ (1)^{\circ}$

V = 1950.1 (1) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 293 (2) K 0.15 \times 0.10 \times 0.10 mm

Data collection

Bruker Kappa APEXII	
diffractometer	
Absorption correction: none	
48723 measured reflections	

6336 independent reflections 4237 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.028$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	244 parameters
$wR(F^2) = 0.202$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
6336 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

C20-O4	1.231 (2)	C20-C21	1.500 (2)
C20-N1	1.361 (2)		
C20-N1-C6	117.40 (12)	C6-N1-C2	120.00 (11)
C20-N1-C2	122.17 (12)		

Table 2

Hydrogen-bond geometry (Å, °).

Cg is the centroid of ring atoms C14-C19.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2\cdots O4^{i}$	0.98	2.55	3.511 (2)	167
$C5-H5B\cdots Cg^{i}$	0.97	2.70	3.634 (2)	162
Symmetry code: (i) r	$-v + \frac{1}{2} - \frac{1}{2}$			

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

SP thanks UGC, India, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2463).

References

- Bruker (2004). SAINT (Version 6.0a) and APEX2 (Version 1.22). Bruker AXS Inc., Madison, Wisconsin, USA.
- Comins, D. L., Brooks, C. A. & Ingalls, C. L. (2001). J. Org. Chem. 66, 2181-2182.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Roques, R., Declercq, J. P., Germain, G., Graffin, P., Kamenka, J. M. & Geneste, P. (1981). Acta Cryst. B37, 712-714.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wang, C. L. & Wuorola, M. A. (1992). Org. Prep. Proceed. Int. 24, 585-587.

Acta Cryst. (2007). E63, o3648 [doi:10.1107/S1600536807035489]

1-Acetyl-2,6-bis(4-methoxyphenyl)-3-methyl-4-piperidone

T. Kavitha, S. Ponnuswamy, K. Kaileshwaran and M. N. Ponnuswamy

Comment

Various piperidine derivatives are found to possess pharmacological activities and form an essential part of the molecular structure of important drugs. The piperidine ring function is a feature of antidepressant, antirrhythmic, antithrombogenic, spasmolytic, tranquilizing and blood cholesterol-lowering activities (Comins *et al.*, 2001). Piperidine derivatives, namely 4-piperidones, are synthetic intermediates in the preparation of various alkaloids and pharmaceutical products (Wang & Wuorola, 1992). The molecular structure of the title compound is shown in Fig. 1. The bond lengths N1—C20 = 1.362 (2)Å and O4—C20 = 1.232 (2)Å show that there is a possibility of resonance between the atoms N1, C2O and O4 due to the delocalization of the hetero π electrons of the carbonyl group. The sum of the bond angles around N1 in the molecule is 359.6 (1)° which confirms that the atom N1 is in the *sp*² hybridized state. Other bond lengths and bond angles agree well with the average values reported in the literature (Roques *et al.*, 1981). The two benzene rings are oriented equatorially with respect to piperidine moiety and are at an angle of 64.63 (5)° with respect to each other. A study on asymmetry parameters, least-squares planes and torsion angles show that the piperidine ring adopts boat conformation (Q_T =0.6531 (2); Nardelli, 1995). The atoms C3 and C6 deviate by 0.5436 (2)Å and 0.5825 (2) Å, respectively, from the mean plane constituted by atoms C2, N1, C5 and C4 atoms. The methyl group substituted at position C-3 of the piperidine ring is oriented equatorially as can be seen from the torsion angle C5—C4—C3—C7 of -168.69 (16)°.

The packing of the molecules is shown in Fig. 3. In the crystal structure, molecules are stabilized by weak C—H···O and C—H··· π intermolecular interactions..

Experimental

The condensation reaction involving *p*-methoxybenzaldehyde, ammonium acetate and ethyl methyl ketone in ethanol afforded 3-methyl-2,6-di(*p*-methoxyphenyl)piperidine-4-one (PM3MPO). The condensation reation between PM3MPO and acetic anhydride in benzene medium at 373 K yielded *N*-acetyl-3-methyl-2,6-di(*p*-methoxyphenyl)piperidine-4-one (APM3MPO). The crystals were formed by the slow evaporation method using ethanol as solvent.

Refinement

H atoms were placed at idealized positions and allowed to ride on their parent atoms, with C—H = 0.93–0.98 and $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

1-Acetyl-2,6-bis(4-methoxyphenyl)-3-methyl-4-piperidone

Crystal data	
C ₂₂ H ₂₅ NO ₄	$F_{000} = 784$
$M_r = 367.43$	$D_{\rm x} = 1.251 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6336 reflections
<i>a</i> = 17.2799 (5) Å	$\theta = 1.2 - 31.2^{\circ}$
<i>b</i> = 10.6783 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 10.5702 (3) Å	T = 293 (2) K
$\beta = 90.951 \ (1)^{\circ}$	Block, colourless
$V = 1950.1 (1) \text{ Å}^3$	$0.15\times0.10\times0.10\ mm$
Z = 4	

Data collection

Bruker Kappa APEXII diffractometer	4237 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.028$
Monochromator: graphite	$\theta_{\text{max}} = 31.2^{\circ}$
T = 293(2) K	$\theta_{\min} = 1.2^{\circ}$
ω and Φ scan	$h = -25 \rightarrow 24$
Absorption correction: none	$k = -15 \rightarrow 15$

48723 measured reflections	$l = -15 \rightarrow 15$
6336 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.202$	$w = 1/[\sigma^2(F_o^2) + (0.1024P)^2 + 0.5597P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
6336 reflections	$\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$
244 parameters	$\Delta \rho_{min} = -0.34 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

	Fractional atomic coordinates and	isotropic or	equivalent isotropic	displacement	parameters $(Å^2)$
--	-----------------------------------	--------------	----------------------	--------------	--------------------

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C2	0.24134 (8)	0.42425 (14)	-0.08397 (13)	0.0384 (3)
H2	0.2265	0.3800	-0.1619	0.046*
C3	0.32592 (9)	0.46922 (16)	-0.09782 (15)	0.0453 (3)
H3	0.3366	0.5264	-0.0271	0.054*
C4	0.38377 (10)	0.36388 (19)	-0.08614 (17)	0.0540 (4)
C5	0.36909 (10)	0.27017 (17)	0.01597 (16)	0.0500 (4)
H5A	0.4158	0.2611	0.0672	0.060*
H5B	0.3582	0.1897	-0.0230	0.060*
C6	0.30243 (9)	0.30384 (15)	0.10221 (14)	0.0416 (3)
Н6	0.2893	0.2268	0.1474	0.050*
C7	0.33568 (13)	0.5451 (2)	-0.21867 (18)	0.0637 (5)
H7A	0.2977	0.6108	-0.2219	0.096*
H7B	0.3288	0.4913	-0.2908	0.096*
H7C	0.3866	0.5810	-0.2194	0.096*
C8	0.18951 (9)	0.53827 (14)	-0.07312 (13)	0.0394 (3)
С9	0.13810 (10)	0.56948 (15)	-0.16958 (15)	0.0453 (3)
H9	0.1319	0.5154	-0.2379	0.054*
C10	0.09535 (10)	0.68025 (16)	-0.16688 (16)	0.0483 (4)
H10	0.0602	0.6988	-0.2317	0.058*
C11	0.10588 (9)	0.76218 (15)	-0.06678 (16)	0.0460 (3)
C12	0.15667 (11)	0.73131 (17)	0.03122 (15)	0.0505 (4)
H12	0.1632	0.7857	0.0993	0.061*
C13	0.19733 (10)	0.62084 (16)	0.02835 (14)	0.0466 (4)
H13	0.2307	0.6008	0.0953	0.056*
C14	0.31855 (8)	0.40173 (15)	0.20338 (13)	0.0404 (3)
C15	0.25926 (9)	0.43286 (16)	0.28652 (14)	0.0451 (3)
H15	0.2112	0.3946	0.2766	0.054*
C16	0.27017 (9)	0.51809 (17)	0.38202 (16)	0.0485 (4)

H16	0.2297	0.5369	0.4358	0.058*
C17	0.34164 (10)	0.57669 (16)	0.39885 (14)	0.0463 (3)
C18	0.40139 (10)	0.54699 (17)	0.31849 (16)	0.0497 (4)
H18	0.4495	0.5851	0.3289	0.060*
C19	0.38947 (9)	0.46045 (17)	0.22259 (15)	0.0470 (4)
H19	0.4301	0.4411	0.1695	0.056*
C20	0.16813 (10)	0.26840 (16)	0.04235 (15)	0.0465 (4)
C21	0.10092 (11)	0.2842 (2)	-0.04786 (18)	0.0569 (4)
H21A	0.1145	0.3423	-0.1131	0.085*
H21B	0.0571	0.3156	-0.0030	0.085*
H21C	0.0881	0.2048	-0.0852	0.085*
C22	0.02875 (14)	0.9225 (2)	-0.1635 (2)	0.0736 (6)
H22A	0.0066	1.0024	-0.1434	0.110*
H22B	-0.0118	0.8650	-0.1867	0.110*
H22C	0.0635	0.9318	-0.2328	0.110*
C23	0.41925 (13)	0.7143 (2)	0.5244 (2)	0.0688 (5)
H23A	0.4145	0.7712	0.5941	0.103*
H23B	0.4373	0.7589	0.4518	0.103*
H23C	0.4555	0.6495	0.5465	0.103*
N1	0.23407 (7)	0.33491 (12)	0.02276 (11)	0.0394 (3)
01	0.43862 (10)	0.3541 (2)	-0.15422 (18)	0.0973 (7)
O2	0.07009 (8)	0.87548 (13)	-0.05605 (13)	0.0624 (4)
O3	0.34637 (8)	0.66045 (14)	0.49598 (12)	0.0619 (4)
O4	0.16286 (8)	0.19646 (14)	0.13284 (13)	0.0661 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0427 (7)	0.0427 (7)	0.0299 (6)	-0.0040 (6)	0.0024 (5)	0.0008 (5)
C3	0.0444 (8)	0.0524 (8)	0.0394 (7)	-0.0066 (6)	0.0072 (6)	0.0027 (6)
C4	0.0422 (8)	0.0694 (11)	0.0506 (9)	0.0012 (8)	0.0087 (7)	0.0020 (8)
C5	0.0483 (9)	0.0537 (9)	0.0481 (8)	0.0065 (7)	0.0028 (7)	-0.0023 (7)
C6	0.0422 (7)	0.0455 (7)	0.0372 (7)	-0.0004 (6)	0.0001 (5)	0.0042 (6)
C7	0.0672 (12)	0.0723 (12)	0.0521 (10)	-0.0096 (10)	0.0148 (9)	0.0169 (9)
C8	0.0424 (7)	0.0424 (7)	0.0336 (6)	-0.0031 (6)	0.0037 (5)	0.0016 (5)
C9	0.0495 (8)	0.0476 (8)	0.0386 (7)	-0.0027 (7)	-0.0028 (6)	-0.0030 (6)
C10	0.0451 (8)	0.0518 (9)	0.0479 (8)	0.0012 (7)	-0.0050 (6)	0.0017 (7)
C11	0.0427 (8)	0.0445 (8)	0.0511 (9)	0.0010 (6)	0.0092 (6)	0.0007 (6)
C12	0.0588 (10)	0.0537 (9)	0.0391 (8)	0.0004 (7)	0.0056 (7)	-0.0091 (7)
C13	0.0551 (9)	0.0520 (8)	0.0325 (7)	0.0016 (7)	-0.0004 (6)	-0.0005 (6)
C14	0.0375 (7)	0.0493 (8)	0.0343 (6)	-0.0007 (6)	-0.0005 (5)	0.0051 (6)
C15	0.0362 (7)	0.0581 (9)	0.0409 (7)	-0.0034 (6)	0.0005 (6)	0.0019 (6)
C16	0.0412 (8)	0.0618 (10)	0.0426 (8)	0.0021 (7)	0.0041 (6)	-0.0010 (7)
C17	0.0483 (8)	0.0515 (8)	0.0390 (7)	-0.0007 (7)	-0.0041 (6)	0.0014 (6)
C18	0.0410 (8)	0.0619 (10)	0.0460 (8)	-0.0095 (7)	-0.0008 (6)	0.0019 (7)
C19	0.0377 (7)	0.0623 (9)	0.0411 (7)	-0.0036 (7)	0.0040 (6)	0.0005 (7)
C20	0.0470 (8)	0.0524 (8)	0.0403 (7)	-0.0112 (7)	0.0021 (6)	0.0020 (6)
C21	0.0476 (9)	0.0711 (12)	0.0520 (9)	-0.0169 (8)	-0.0033 (7)	0.0073 (8)

C22	0.0713 (13)	0.0596 (12)	0.0898 (15)	0.0170 (10)	-0.0029 (11)	0.0083 (11)
C23	0.0722 (13)	0.0694 (13)	0.0644 (12)	-0.0161 (10)	-0.0084 (10)	-0.0079 (10)
N1	0.0401 (6)	0.0442 (6)	0.0339 (6)	-0.0049 (5)	0.0004 (4)	0.0041 (5)
01	0.0634 (9)	0.1290 (16)	0.1007 (13)	0.0277 (10)	0.0411 (9)	0.0362 (12)
O2	0.0584 (8)	0.0557 (7)	0.0731 (9)	0.0128 (6)	0.0013 (6)	-0.0073 (6)
O3	0.0603 (8)	0.0707 (8)	0.0546 (7)	-0.0054 (6)	-0.0020 (6)	-0.0160 (6)
O4	0.0647 (8)	0.0794 (9)	0.0541 (7)	-0.0250 (7)	-0.0019 (6)	0.0240 (6)
Geometric paran	neters (Å, °)					
C2—N1		1.484 (2)	C12-	-H12	0.930	0
C2—C8		1.517 (2)	C13—H13		0.9300	
C2—C3		1.548 (2)	C14-	C19	1.388 (2)	
С2—Н2		0.9800	C14-	C15	1.401 (2)	
C3—C4		1.508 (3)	C15-	C16	1.370 (2)	
С3—С7		1.524 (2)	C15-	-H15	0.9300	
С3—Н3		0.9800	C16-	C17	1.393 (2)	
C4—O1		1.204 (2)	C16-	-H16	0.9300	
C4—C5		1.497 (3)	C17—O3		1.363 (2)	
C5—C6		1.524 (2)	C17—C18		1.385 (2)	
C5—H5A		0.9700	C18-	C19	1.385	(2)
C5—H5B		0.9700	C18-	-H18	0.930	0
C6—N1		1.476 (2)	C19-	-H19	0.930	0
C6—C14		1.518 (2)	C20-	O4	1.231	(2)
С6—Н6		0.9800	C20-	N1	1.361	(2)
C7—H7A		0.9600	C20-	C21	1.500	(2)
С7—Н7В		0.9600	C21-	-H21A	0.960	0
C7—H7C		0.9600	C21-	-H21B	0.960	0
С8—С9		1.382 (2)	C21-	-H21C	0.960	0
C8—C13		1.393 (2)	C22-	02	1.423 (3)	
C9—C10		1.395 (2)	C22—H22A		0.9600	
С9—Н9		0.9300	C22—H22B		0.9600	
C10-C11		1.383 (2)	C22—H22C 0.9600		0	
C10—H10		0.9300	C23—O3		1.412 (2)	
C11—O2		1.364 (2)	C23—H23A 0.9600		0	
C11—C12		1.386 (2)	C23-	—Н23В	0.960	0
C12—C13		1.374 (2)	C23-	—Н23С	0.960	0
N1—C2—C8		113.64 (11)	C12-	—С13—С8	121.1	6 (15)
N1—C2—C3		111.30 (12)	C12-	—С13—Н13	119.4	
C8—C2—C3		108.53 (12)	C8—	-C13—H13	119.4	
N1—C2—H2		107.7	C19-		117.0	0 (14)
С8—С2—Н2		107.7	C19-	C14C6	124.4	2 (14)
С3—С2—Н2		107.7	C15-	C14C6	118.5	4 (13)
C4—C3—C7		112.50 (15)	C16—C15—C14		121.79 (15)	
C4—C3—C2		112.73 (14)	C16—C15—H15		119.1	
С7—С3—С2		111.22 (14)	C14—C15—H15		119.1	
С4—С3—Н3		106.6	C15—C16—C17		120.22 (15)	
С7—С3—Н3		106.6	C15-	—С16—Н16	119.9	
С2—С3—Н3		106.6	C17—C16—H16		119.9	

O1—C4—C5	121.18 (18)	O3—C17—C18	125.19 (15)
O1—C4—C3	122.86 (17)	O3—C17—C16	115.65 (15)
C5—C4—C3	115.95 (14)	C18—C17—C16	119.16 (15)
C4—C5—C6	114.36 (14)	C19—C18—C17	119.90 (15)
С4—С5—Н5А	108.7	C19-C18-H18	120.0
С6—С5—Н5А	108.7	C17—C18—H18	120.0
С4—С5—Н5В	108.7	C18—C19—C14	121.92 (15)
С6—С5—Н5В	108.7	С18—С19—Н19	119.0
H5A—C5—H5B	107.6	С14—С19—Н19	119.0
N1—C6—C14	112.45 (12)	O4—C20—N1	121.10 (15)
N1—C6—C5	108.57 (12)	O4—C20—C21	119.84 (15)
C14—C6—C5	116.89 (13)	N1-C20-C21	119.07 (14)
N1—C6—H6	106.1	C20-C21-H21A	109.5
С14—С6—Н6	106.1	C20-C21-H21B	109.5
С5—С6—Н6	106.1	H21A—C21—H21B	109.5
С3—С7—Н7А	109.5	C20-C21-H21C	109.5
С3—С7—Н7В	109.5	H21A—C21—H21C	109.5
H7A—C7—H7B	109.5	H21B—C21—H21C	109.5
С3—С7—Н7С	109.5	O2—C22—H22A	109.5
H7A—C7—H7C	109.5	O2—C22—H22B	109.5
H7B—C7—H7C	109.5	H22A—C22—H22B	109.5
C9—C8—C13	117.92 (14)	O2—C22—H22C	109.5
C9—C8—C2	120.72 (13)	H22A—C22—H22C	109.5
C13—C8—C2	121.08 (13)	H22B—C22—H22C	109.5
C8—C9—C10	121.57 (15)	O3—C23—H23A	109.5
С8—С9—Н9	119.2	O3—C23—H23B	109.5
С10—С9—Н9	119.2	H23A—C23—H23B	109.5
C11—C10—C9	119.29 (15)	O3—C23—H23C	109.5
С11—С10—Н10	120.4	H23A—C23—H23C	109.5
С9—С10—Н10	120.4	H23B—C23—H23C	109.5
O2—C11—C10	124.80 (16)	C20—N1—C6	117.40 (12)
O2—C11—C12	115.53 (15)	C20—N1—C2	122.17 (12)
C10-C11-C12	119.67 (15)	C6—N1—C2	120.00 (11)
C13—C12—C11	120.36 (15)	C11—O2—C22	117.96 (15)
C13—C12—H12	119.8	C17—O3—C23	118.00 (16)
C11—C12—H12	119.8		
N1—C2—C3—C4	44.06 (17)	N1—C6—C14—C15	55.01 (18)
C8—C2—C3—C4	169.83 (13)	C5-C6-C14-C15	-178.42 (14)
N1—C2—C3—C7	171.48 (14)	C19-C14-C15-C16	0.5 (2)
C8—C2—C3—C7	-62.75 (17)	C6-C14-C15-C16	178.40 (15)
C7—C3—C4—O1	11.1 (3)	C14—C15—C16—C17	0.0 (3)
C2—C3—C4—O1	137.8 (2)	C15—C16—C17—O3	179.61 (15)
C7—C3—C4—C5	-168.74 (16)	C15-C16-C17-C18	-0.4 (3)
C2—C3—C4—C5	-42.0 (2)	O3—C17—C18—C19	-179.75 (16)
O1—C4—C5—C6	173.8 (2)	C16—C17—C18—C19	0.3 (3)
C3—C4—C5—C6	-6.4 (2)	C17—C18—C19—C14	0.3 (3)
C4—C5—C6—N1	50.56 (19)	C15—C14—C19—C18	-0.7 (2)
C4—C5—C6—C14	-77.90 (18)	C6—C14—C19—C18	-178.39 (15)
N1—C2—C8—C9	-124.80 (15)	O4—C20—N1—C6	8.9 (2)

C3—C2—C8—C9	110.81 (16)	C21-C20-N1-C6	-171.52 (15)
N1—C2—C8—C13	61.28 (18)	O4—C20—N1—C2	-178.67 (15)
C3—C2—C8—C13	-63.11 (17)	C21-C20-N1-C2	1.0 (2)
C13—C8—C9—C10	0.3 (2)	C14—C6—N1—C20	-105.61 (16)
C2—C8—C9—C10	-173.76 (14)	C5-C6-N1-C20	123.47 (15)
C8—C9—C10—C11	1.5 (2)	C14—C6—N1—C2	81.74 (16)
C9—C10—C11—O2	177.08 (16)	C5-C6-N1-C2	-49.18 (18)
C9—C10—C11—C12	-2.1 (2)	C8—C2—N1—C20	67.01 (18)
O2-C11-C12-C13	-178.30 (15)	C3—C2—N1—C20	-170.11 (14)
C10-C11-C12-C13	1.0 (3)	C8—C2—N1—C6	-120.70 (14)
C11—C12—C13—C8	0.9 (3)	C3—C2—N1—C6	2.18 (18)
C9—C8—C13—C12	-1.5 (2)	C10-C11-O2-C22	-10.6 (3)
C2—C8—C13—C12	172.55 (15)	C12—C11—O2—C22	168.60 (18)
N1-C6-C14-C19	-127.30 (16)	C18-C17-O3-C23	-5.4 (3)
C5—C6—C14—C19	-0.7 (2)	C16-C17-O3-C23	174.52 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!-\!\!\!\!\!\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
C2—H2···O4 ⁱ	0.98	2.55	3.511 (2)	167
C5—H5B···Cg ⁱ	0.97	2.70	3.634 (2)	162
Symmetry codes: (i) x , $-y+1/2$, $z-1/2$.				

